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The static dielectric function €(g) for degenerate n-type o -Sn has been calculated for small
q. Owing to the fact that the degeneracy of the contact point between the conduction and va-
lence bands is symmetry induced, the dielectric constant has a strong dependence on impur-
ity concentration and is greatly enhanced in value for low-doping concentrations. This di-
electric enhancement gives an excellent quantitative account of the observed high-mobility

values at low temperature (4.2 °K).

I. INTRODUCTION

Among semiconductors, a@-Sn has very highelec-
tron mobility. This is usually attributed to the
small effective mass of the electrons in the central
minimum of the conduction band. Ithasbeennoted,
however, that the smallness of the effective mass
alone can not quantitatively account for the mea-
sured high-mobility value at low temperature
(4. 2 °K) for the lightly doped samples. One is led
to look into the strength of the scattering mecha-
nism itself for other possible explanations of the
observed anomolously large mobility values, At
the low-temperature region, the impurity ions are
the dominant sources to scatter electrons off.

As for the question of the screening of the im-
purity potential, several peoplel'2 have studied the
static dielectric constant € (g) of a pure sample of
a-Sn and found that € (g) goes to infinity like \/q,
as ¢ - 0. This infinity comes from the interband
coupling between states near the degenerate band
edge where the conduction and valence bands make
contact.® For an actual sample of a-Sn, however,
the presence of impurity carriers is sufficient to
remove this infinity. On the other hand, the me-
tallic-type screening from intraband coupling now
comes into play and contributes a Fermi-Thomas
term to the dielectric constant. Lavine and Ewald?
have shown that even with the Fermi-Thomas
screening, not only the mobility value itself but
also its rate of increase as a function of impurity
concentration # in the range n~10'"-10* is not ac-
counted for. They had to fit the mobility data by
assuming in addition a concentrational-dependent
dielectric constant,

The present paper deals with the concentrational-
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dependent static dielectric constant for a n-type
degenerate sample of a-Sn. We show that it has
the same origin as the one giving rise to an infinite
dielectric constant for the pure sample, which is
the interband transition near the degenerate band
edge. We calculate € (q) for 0= ¢ <3k, where ky is
the Fermi momentum of the degenerate donor elec-
trons. With the complete €(g) we evaluate the elec-
tron mobility due to impurity scattering.

We present the dielectric-constant calculation
in Sec. II and the mobility calculation in Sec. III.
Finally, in Sec. IV, we discuss the situation with
respect to other zero-gap materials.

II. STATIC DIELECTRIC CONSTANT

In discussing the dielectric constant for a degen-
erate n-type sample of a-Sn, we divide it up into
three parts:

€(g) =€+ 4mai™® (q) +4m '™ (q) . (2.1)

The interband coupling between the valence-band
and conduction-band states close to the edge (2 <gq)
gives rise to a polarizability which we denote by
a'™** and the intraband excitation of the impurity
carriers gives rise to '*™, Transitions between
valence and conduction states at £ > g as well as
transitions among all other bands or between all
other bands and the conduction- or valence-band
contribute a ¢g-independent part €;,, Among the
three parts, €, is known experimentally® to be 24
and '™ should be appropriately given by the Fer-
mi-Thomas expression 4ma!*™® =k, /q® for small
g. Tt is the part o™ which we calculate in detail.
It turns out that although a™°* remains finite in a
doped sample, it has a strong dependence on the
impurity concentration » and can reach a high
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value when # becomes small,

In a two-band approximation, the random-phase-
approximation (RPA) interband dielectric constant
is given® by

einter(q):l_ 81752 Z 1<E,C| e'i33|ﬁ+q,v)|2
kR

q
X (Nl?-l-?!,v —Ni,c) ,

Egoqg 0 - Ei,c

(2.2)

where the Bloch state |kK,n) has energy E; , and
occupation number Ni , with n=c or v specifying
conduction or valence band, respectively. The
coupling matrix element in (2. 2) is just the overlap
integral between the periodic part of the conduction-
state and valence-state Bloch functions., This has
been evaluated in the k-P approximation®? to be

e (T —are . a oy 3 (kx§)?
'MI _l<k,c|e (k+qu>[ =Zm_(2.3)
Under the same approximation, both energy bands
are warped. For simplicity, we neglect the warp-
ing and assume spherical bands E, , =7 %?%/2m
and E, , =-7%%?%/2m), with energy measured from
the band edge.

Because of the use of the E-ﬁ approximation and
of the two-band model, €, is not correctly evaluat-
ed. As mentioned before we use the experimental
value instead. We compute 4ma!™® (g) = €!****(q)

- const from (2. 2). The Pauli principle requires
the interband coupling to be present only when the
final state lies outside the sphere of radius &z oc-
cupied by the degenerate donor electrons. This
part of the calculation would have been exact in the
small-¢ limit if not for the approximation of ne-
glecting m* /m} as compared with 1. This is equiv-
alent to using m) for the reduced mass of the elec-
tron-hole pair. For a-Sn,”®m}=0.024m and m}
=0. 26m, this approximation only introduces an er-
ror not exceeding 10%. The actual calculation is
presented in Appendix A and the final result is giv-
en below:

4ra™eT = 6elmXf(q)/ ik, + O(q),

gand k<K  (2.4)
where O(g) is some function whose value is neg-
ligibly small for small ¢ and hence of no concern
to us and KX is the Brillouin-zone radius. The
function f (q) is independent of any parameter of the

TABLE I. Values of interband dielectric constant.

n(em3) 1014 1015 1016 1017 1018
eflg=0 105 62 42 32 28
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FIG. 1. The function f(g).
sample and is given in (A7). A plot of it is given
in Fig. 1.

We also present in Table I the complete inter-
band dielectric constant €,=¢€,+4ma " for sever-
al impurity concentration values. As seen from
the table, the dielectric constant is greatly en-
hanced in value for low impurity concentrations.
This great enhancement of dielectric constantleads
to the observed enhancement of low-temperature
electron mobility. This we discuss in detail in
Sec. III

III. ELECTRON MOBILITY

The dominant scattering mechanism contributing
to the low-temperature mobility is the impurity
scattering, We, therefore, start this section with
a discussion on the screening of the bare impurity
potential. We may use the explicit form of kZp/q®
for 4mai™™ and rewrite the total dielectric con-
stant in (2. 1) in the following form:

elg) =€, (@1 +k%% (@)*/4%] (3.1)

where k¥5(q) =kpr/[€,(q)]/%is the effective Fermi-
Thomas screening parameter. Corresponding to
the two multiplicative factors in (3. 1), there are
two effects produced by an enhanced €;. One ef-
fect is a reduction in the strength of the impurity
potential and the other is an increase in the effec-
tive Fermi-Thomas screening length, They pro-
duce opposite results in the impurity scattering
cross section. However, the first effect dominates
the second and the observed sharp increase of the
low-temperature mobility with decreasing concen-
tration can then be explained.

To discuss the question quantitatively, we note
that the mobility p for a degenerate sample® is giv-
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en by

p=le|(ikpnA)™t | (3.2)
where A is the total cross section for momentum
transfer and is related to the differential cross

section o(8) by
A= [0(8)(1~cost)df . (3.3)

We assume the bare impurity potential to be Cou-
lomb and screened by €(g) in (3.1). The form fac-
tor is then

Vi(q) = - ame?/e(q)d® . (3.4)
Owing to the g dependence of €;, the screened im-
purity potential V,(») is no longer of the Yukawa
form exp[- 2L (0)r]/€; (0}, which is appropriate
for charged impurities in ordinary semiconductors.
To simplify the form of the potential for the mobil-
ity evaluation, we use the following expansion for

f(q):
flg)=4%[1-alg/kp)?] .

This expansion is clearly suggested by Fig. 1, and
the value for the constant a is about .

We calculate the differential scattering tross
section for the screened impurity potential V; us-
ing the Born approximation, For the case under
consideration, the Born approximation is valid be-
cause of the weakness of the potential. The ques-
tion of validity is discussed in Appendix B. The
cross section is then given by the well-known re-
lationship

o(0)= [ (mS/212%) V, (@), (3.6)
where the momentum transfer g = 2k5 sinzf. The
quantity A in (3. 3) is then calculated to first order

in @ in Appendix C. From (3. 2), (C4), (C5), and
(C9) we obtain the mobility

(3.5)

= (3m|e|/21) e, (0)@X12{g(b) + 8a[1 - €, /€4(0)]} 7,
3.7

where g(b) represents the zero-order term arising
from Yukawa potential and is given in (C6) explicit-
ly. The quantity @% =72/m* e? is the effective
Bohr radius for the electron.

Using the values of €;(0) from Table I and n%
=0.024m and a=1, the mobility is calculated as
a function of #» and shown in Fig. 2 for n=10*-5
x10'" cm™%, The experimental mobility values* " *°
at 4. 2 °K where impurity ions are expected to pro-
vide the dominant scattering mechanism are also
shown. The range of the impurity concentration
is chosen based on the following consideration,
Since a-Sn has a zero energy gap, the impurity at-
oms are ionized at all temperatures.!* Then at
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FIG. 2. Carrier mobility versus impurity concentra-
tion in @-Sn. The solid line shows the calculated mo-
bility with the enhanced dielectric constant, The dotted
line is the calculated mobility with €;=24., Experimental
data at 4.2 °K are from Refs. 4 (plus signs), 7 (crosses),
and 10 (open circles).

4,2 °K. the electron gas is degenerate at 10 cm™®

or above. At the upper limit »=5x10'7, the zero-
gap screening is already negligible while at the
same time the secondary valleys begin to be popu-
lated and the mobility has an abrupt change'? due to
a different mechanism discussed by Robinson and
Rodriguez.!®* For comparison we also show on the
same figure the calculated mobility value using a
constant €,=24. The agreement between the calcu-
lated curve using enhanced dielectric constant and
the experimental values is excellent. On the other
hand, without invoking the dielectric enhancement,
Broerman'? has also produced an excellent fit to
the mobility data by simply using Bloch waves to

evaluate the impurity scattering cross section,
Therefore, the excellent agreement achieved by us

may be somewhat coincidental.

IV. DISCUSSION

We would like to discuss other zero-gap materi-
als. Do they all possess an enhanced dielectric
constant ? We shall discuss this question in terms
of the existence of dielectric singularity in a pure
sample, since this singularity has the same origin
as the dielectric enhancement in a doped sample.
For this class of materials, the zero energy gap
may be required by symmetry or may be acciden-
tal, The coupling matrix element | M |2 in Eq.
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(2. 2) should have quite different behavior in the

two cases, Note that | M| is just the overlap in-
tegral between the spatially periodic part of the two
Bloch functions, When the two bands touch each
other accidentally, |M |2 behaves like g% in the
small-¢ limit. On the other hand, if the degenera-
cy of the band edge is symmetry induced as ina-Sn,
the strong mixing between conduction and valence
states should make | M |2 a constant in the small-

g limit for initial and final states in the vicinity

of the band edge (2 <¢q) as can be seen from Eq.
(2.3). When | M |%~const and the energy difference
between conduction and valence states near the
band edge (k <q) goes like g2 the contribution of
states in the region k <g should give a dielectric
constant which behaves like A\/q as g -~ 0 according
to Eq. (2.2). This has been confirmed by detailed
calculations.? But when | M |®~¢?, the dielectric
constant behaves like ¢ as ¢ - 0 and the singularity
does not exist, As a result, material with zero
energy gap which is not required by symmetry has
no concentrational-dependent dielectric constant.
The value of this dielectric constant depends on the
average energy gap just as in any ordinary semi-
conductor,

We note that the dielectric enhancement discussed
here has not been found in optical experiments.®
The absence of enhancement at optical frequency is
expected from qualitative considerations, De-
tailed investigation of the frequency dependence of
the dielectric constant for both pure and doped a-Sn
by Sherrington and Kohn'® also confirms this point,

A condensed version of this paper has been pub-
lished elsewhere,'®
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APPENDIX A: EVALUATION OF ainter

Taking the matrix element given in (2, 3) and
making the spherical-band approximation with
m* /m¥ < 1, €™ (g) in (2. 2) is given by

x2(1 = p?)

1+2xp+x%)°% 7 (A1)

2, %

ginter (q)=1+%%’—%Q ffdxdu (
where we have put x=%/q and u=k-§/kq in (2. 2)
and turned the summation over K into an integra-
tion in 2 space. Because of the spherical-band ap-
proximation, both the conduction- and valence-
band states are contained in a sphere of radius K
in # space. Concentric with the conduction sphere,
we draw another sphere of radius 2, containing
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FIG. 3. Section through the centers of spheres show-
ing the integration domain (shaded region) for the case
q<kp<K-q.

states occupied by the donor electrons. We dis-
place the common center of these two spheres with
respect to the center of the valence sphere by a
distance g. The integration is performed in the
overlap region between the valence sphere and the
space bounded by the two concentric spherical sur-
faces. The origin for x in (Al) is placed at the
center of the valence sphere, We show the inte-
gration domain for the case K —q > kp >¢q by the
shaded region in Fig, 3.

There appears a constant term in €1****(g) when
the integral in (Al) is worked out. However its
value is of no concern to us because we have al-
ready decided to rely upon experiments for the val-
ue of €,. Ignoring a constant, we obtain the com-
plete result for 47a*™®" below:

4na'™*r(q) = (6e2m’ /nh%g)(I +1,) . (A2)

The function / is given by

__ L _1(K q) 3(q\°

I'=-1¢ 8<q+K>+32(K>
1 (K®-q%)? ( q) 1 ( q>]"'
-8~——2—2——kq In l—K +4 In 1-—K

An L(8)-5 pro ()

K n=0 (2n+1)2 K—q

1/q® _kE @a) kp +q
8(733— pr + 4In lnlkp—ql
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The subscript I for I,(I=1, 2, 3) is used to specify
three different ranges of g values. These three
ranges together with the appropriate I; are given
below:

kF 2 © 1 q 2n+ 1
__1 R _
q )] +,§ (2n+1)2(kF —q)

11 /74 Y
T2 nz=:1 ne (kF'q> ’ (a4)
case (2) kp2q>3 kg
Lo LS L e _1> "
279272 Z ni\g
had 1 k 2n+l
- ZE
nlj-:; (2n+1)2(q 1) ’ (A5)
case (3) q2kp
? 1 &1 R\
I3:T§+§ %:1 n—g<l— p A (A6)
We may put
flq)=(ke/q)(I+1,) + O'(q) (A7)

to express 4ma!™* in terms of f(g) as in (2. 4),
where O’(g) is some function whose value is neg-
ligibly small for small q.

APPENDIX B: VALIDITY OF BORN APPROXIMATION

In discussing the question of validity we neglect
the g dependence of €, and assume a Yukawa form
for the screened impurity potential, i.e.,

e? e—k;,fl{ 0)r
&0
In considering the scattering of electrons of effec-
tive mass m ) and momentum %, by the potential in
(B1), the condition for validity 17 of the Born ap-
proximation for kp > REf (kp/kEi~2-4 for n
=10'-10% cm™3) becomes

Vo)~ - (B1)

[m*e?/e; (0% ] In[kp /REL(O)]<< 1 . (B2)
Expressing k&f in terms of k2., i.e.,

ket ={[1/€,(0)] [4m s e/ 77 %) kp}V? | (B3)
we can rewrite the validity condition in (B2) as

[2¢;(0)@Zkp] In[ime, (O)atk ) <1 | (Ba)

ine (0)alky > 1,

where @ is the effective Bohr radius, It is seen
that the condition in (B4) is satisfied as the factor
€;(0)@Xkr, is always greater than 1 for the values
of impurity concentration under consideration,

N

APPENDIX C: EVALUATION OF 4

Using the ansatz (3. 5), the screened impurity
potential V,(g) becomes

€ q*
_ Yuk - -
Velg)=-V; ‘“[1 (1 e,(O))a[q2+k;’T‘

-1
<o>2]k§] ’
(c1)

where

v rukava _ qre2/e (0)q? +REL(0)?] .

By keeping terms only to first order in a, the dif-
ferential cross section according to (3. 6) can be
expressed as the sum of two contributions:

o(0)=0y +0,, (c2)

where oy = | (% /277 2)V I*3¥2 (4)| 2 arises from the
Yukawa potential, and o, is given by

8a € ¢
"~ le0atE, ("5 ©) TrEer: .Y

It is remarked here that the expansion in powers of
a is valid because the largest value for the second
term inside the bracket in Eq. (C1) (at g=2kj) at
impurity concentration as high as 10'® cm~? is about
i. Therefore, we can neglect terms of order a2 or
higher since we are only aiming at 10% accuracy
in our results,

Corresponding to ¢y and o, in (C2), the total
cross section for momentum transfer in (3. 3) can

be split into two terms:

A=Ay +A,. (C4)
The Yukawa term A, has been calculated® and we
quote the results below:

. 2mgb)
Ar = kZle(0)aXr,]? (C5)

where
g®)=1n(1+5)-b/(1+d), (ce)
b=ne(0)atky . (cn)

The term A, is equal to the following integral:

_ 87ma _ €
Ac = kil e, (0)aXry]? (1 €r (0))

sin®(3 6) sing
a6 {sin®(Z 0) + [k 55(0)/2% £ ] 8
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The integral is evaluated to be just 2 by neglecting

the term %§1/2k, in the denominator of the inte-

grand, We obtain then

167a[l - €,/¢€;(0)]

%2[e, ©)ak ] (c9)

A =
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A Brillouin-scattering study of amplified shear waves in propagating acoustoelectric do-
mains in » GaAs is presented. On the basis of small-signal theory, a complete formalism
is developed for the amplification of piezoelectrically active waves from the thermal back-
ground of lattice vibrations. Our experimental results show that this provides a good de-
scription of the acoustic flux when its intensity is less than about 10-2 J/cm®, Here, the
growth rate, intensity, frequency distribution, angular distribution, and spatial distribu-
tion of the amplified shear waves were all found consistent with small-signal theory. In
the subsequent stages of growth, when the acoustic waves become very intense, many in-
teresting deviations from small-signal theory were found, resulting from at least two non-
linear effects, parametric frequency conversion, and enhanced electron-phonon coupling.
The acoustic spectrum is rapidly extended to low frequencies, with relatively narrow do-
mains being initially produced at these frequencies. The acoustic energy density tends to
saturate at about 1 J/cm?,

wave.® Such interaction with internally generated
acoustic waves has been used to explain the elec-

trical instabilities observed in many piezoelectric
semiconductors (CdS, * GaAs, * CdSe,® ZnO, ¢ Te,”

I. INTRODUCTION

It is well known that injected ultrasonic waves
can be amplified in piezoelectric semiconductors

by the application of a sufficiently high electric
field ! because of the strong interaction with mobile
charge carriers.? When the drift velocity exceeds
the sound velocity, energy and momentum are
transferred from the carriers to the acoustic

ZnS, ® GaSb, ® and InSb '°). These instabilities gen-
erally show up as either damped or continuous os-
cillations in the current. The continuous oscilla-
tions are characterized by a high-field domain
which propagates with the velocity of sound in the



